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An account is given of a method of calculating heat transfer in equip~
ment with three heat transfer agents under conditions of variable heat
transfer coefficients and surfaces,

In industry there are various forms of equipment
in which three heat transfer agents play a part in
heat transfer. Such equipment is used, in particular,
in cases where mixing of the agents is not allowable,
due to the possibility of undesirable chemical reac-
tions or to the danger of explosion [1], when heat
transfer takes place between two agents, with heat
Ioss to the surrounding medium [2], when an inter-
mediate agent is used in various technical processes
[3], and during the firing of materials in the disperse
state [4]. . .

An analytical solution has been given in [1, 2,5, 9].
In these papers the assumption is made that the heat
transfer coefficients and surfaces are constant, which
is justified in a number of cases. However, if a dis-
perse material plays a part in the heat transfer, for
example, in pneumatic transport equipment, the heat
transfer surface is a variable quantity. An example is
the equipment illustrated in the figure.

The gas and the finely divided material are moving
vertically upward, while the larger particles move
in the opposite direction (a). Motion of all three agents
in one direction is possible (b). It is well known that in
in this case both the heat transfer surface and the coef-
ficient are functions of the coordinate x.

For the heat transfer process represented in the
figure, the system of equations for zero-gradient heat-
ing of the particles has the form

df = — -2 (¢ —1)dFy—~2— (¥ —")dF,, (1)
1 1
df = -2 (¢ — ") dF,, @)
W,
dtu/ — —_*—_ 0’3 (tl ___tlll) dF3 (3)
W,

The upper sign in (3) and in all the following expres-
sions corresponds to the scheme of (a), and the lower
sign to that of (b).

In these equations the heat transfer coefficients
@y and @gare functions of the surfaces ¥, and Fj,
respectively.

Since the heat transfer coefficient depends on the
relative velocity of the gas and the material, the maxi-~
mum values of the coefficients ayj and «g will be at
the initial section of the equipment (F,|yx=p = 0).

A preliminary analysis showed that the variation
of heat transfer coefficient with the coordinate x may
be represented in the form of the following relations:

Oy = 0yi EXP (—CpFy), 05 = 0gi €XP (— C5Fy). (4)

It should be noted that in a certain range relations (4)
approximate even to a linear variation of heat transfer
coefficients, with sufficient accuracy.
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Motion of the heat transfer agents;
I) gas; II) finely divided materials;
IIT) coarse particles.

As has been mentioned, the heat transfer surfaces
also change with change of x, and then the relation
between them may be represented in the linear form

Fy = bF,. )]
We shall introduce the following notation:

© = (' — t)/(ti— 17); (6)

0" = (' — 1)/t —1y); (7
O = (1" —i/t; — 1) (8)
2LF = X; 9)
) \
Gpj dFy
=f. 10
o ar =P (10)

Allowing for (6)—(10), system (1)—(3) takes the form

de’ .
L2 . (@—0 X
— ( ) exp (— ¢, X)
— B (O — 8" exp (— £;X), 11)
ae” . , "
CTax Ry (6" — ") exp (— &, X); (12)
d@”’ — ’ rir
= T pR, (8 — 0" exp (— ¢ X). (13}

dx



428

Here

Solutions of system (11)—~(13),with respect to @"
leads, after some transformations, to the following
equations:

3 O\

F [Aexp(—cX) + Bexp(— e, X) +C1 X

axz
o o
X d_XZ_ F {Dexp[— (e +cs) X1+
+ cs Bexp (—e,X) + ¢y Aexp (—csX) + L) c;?( =0, (14)

where

A=PRy F1); B=F (1 +Ry); C=F(c+ 1))
D=BRyRis(l FRu+Ru); L =Fcy(cs-+ ¢

By means of the substitution

d@ll
=— 15
ax 12)
Eq. (14) is reduced to the form
ary ay
FP(X)— F X)Y =0,
axz 1(X) dx T AX (16)

where Py(X) and Q(X) are the coefficients of d’@YdX?
and d@/dX, respectively.

Let us formulate the boundary conditions.

The first establishes the value of the temperature
of agent II in the initial section

U]smo =11 oOT from (7) @'|x—o=—1. (17
We obtain the second boundary condition from (12),

d @Il

—d‘k“ o =Ry, or Y|x—o=Rj. (18)

Boundary conditions (17) and (18) are valid for both
cases. From (13) we obtain

, 4o’ »
O = —ax— R21 exp (C4X) + © . (19)

Substituting (19) into (11), we obtain

2o 40’
axe = —[¢; - Ry, exp ("' ¢ X)) TL;(_ — Rypexp (—2¢,X) x

X (0" —©") —BRyexp[— (e, +¢5) X1(8'— @™).  (20)

Hence we obtain for the counterflow case (a)

ay e

=R, (BOF —c,—R,—1), (21
dx o axe |X=0 12((5 f 3 12 ) ( )

and for the direct-flow case (b)

| e

= =R, (O] —c,— R, —1). 2la
rra T 12(BO; — ¢ — Ry, —1). (21a)
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We shall seek a solution of (16) in the form of a power
series

Y = 2 5,X" 22)
n=0 .

According to Cauchy's theorem [6], since the coef-
ficients of the first and second derivatives in (14) do
not have singular points, the series (22) converges
for any X.

We represent the coefficients of the derivatives in
(14) in the form of the following series:

Pi(X)=C+ Aexp(— ¢ X) + Besp(—aX) =

=C+ Y (Acg’—l—Bcg")—;l— (—1)" =

m=0
—a+ Y a,X", @23)

where
1

a,=A+B+C; a,=(A®& + Bcl) —

(—1)%; (28a)

Qi(X) =L+ Dexp[—(cs +¢) X] +
+ ¢5 Bexp (— ¢y X) + e, A exp (— 6 X) =
=L+ Y Do+ )"+ B +
m=0
Xm
m!

1=t Yo, x" @

m==1

+ C4A03"]

where
by=L + D 4- ¢;B -+ ¢,4;

by, = [D(cy + ¢5)” + ¢sBcs’ + ¢, Acs’]

_(—_ﬂ . (24a)
m!

The series (23) and (24) are absolutely convergent.
As is well known, the general solution of (16) has
the form

Y= CY,+ CY,. (25)

By substituting (22)—(24) into (16) and determining the
coefficients sp of (22) by the method of undetermined
coefficients, under the following constraints:

Vixo=1, Yix=0=0,

Y2|X=0 = O) Y;‘X:O = 19 (26)
we find particular solutions Y; and Y, of (25). The
constants of integration C; and C, are determined

from (25) with boundary conditions (18) and (21), and
(21a) with account for (22), respectively,

C, =Ry, @)
For the counterflow case
Cy=R,,(BOF —cs— Ry, — 1), @27a)
and for parallel-flow |

Co= Ry (O] — ¢y — Ri;— 1). (27b)
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We thus obtain

Y=C Y X"+ G, Zslf’x". (28)
n=0 n=0

According to (15), by integrating (28), we find an ex-
pression for @,

@©

o=y 0 X7

n=0

+C Es‘” X Cs  (29)

where Cjyis determined from boundary conditions (17),
Cy=—1. (30)

The coefficients in (29) were determined by the me-
thod described above, and are equal, respectively, to

=1, s =0,

st =0, s =1

>

1
1), (2
S()l()._. 4

~ .
n( 1) I:Z 18;Qn—; +
n—l1

_|_Zsb,1_(,+1,J n=1,2 3.. (31)

Jf=i—1

For X = 0.5 the series in (29) converge quite ra-
pidly, and it is sufficient to take only the first few
terms.

If X >0.5, we may replace X in (29) by X — X,
where X — X =0.5. In this case all the foregoing
arguments remain in force, only the reference point
being changed.

It should be noted that to obtain enhanced heat trans-
fer in the weightless state, there has been a tendency
recently to build equipment in which so-called acceler-
ation sections [8] are included. As a rule, the extent
of the effective part of these is small, and, in prac-
tice, in the majority of cases X <0.5. The greatest
change in heat transfer coefficient « occurs in the
acceleration sections, and neglect of this change in
« may lead to substantial errors.

From (12), allowing for (15), we obtain an expres-
sion for determining the dimensionless temperatures
of the gases

0" = 0" 4 YR, exp (¢, X). (32)

The dimensionless temperature of agent III is deter-
mined from (11),

1 de’
0" = 0 + —exp (c:X
+5 pesX)—— ax +

+ —é— exp [(¢cs =— ¢,) X](© —0"). (33)

By substituting the value of d@/dX from (32) into (33),
and taking account of (15) and (28), we obtain, after
some transformations,

0" — @ i {Y [1 4+ Ry caexp (e, X)] +

@

-+ Ry exp(c,X) (Cl 2 NSy W x +

n=1
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0
+c, E nsP X" ) +

n=1

+exp(— c,X) (& — @")} % exp (:X) . (34)

For the counterflow case the value of @' appearing in
29), (32), and (34) may be determined, because of
(27a), as follows.

The heat balance equations for the variant of heat
agent motion in question (counterflow) has the form

t — t% =—Ry (tl - tf) - R31(f'i” - tf”) (39)
Going over to dimensionless guantities according to
relations (6)—(8), and making certain transformations,
we obtain from (35)

0! = 0] —Ry;;0; — RyRyz (1 + ), (36)

where
01 =t — 1)/ (i — 1)
Substituting Into (36) the values of CE and ®f from (29)

and (32) with X = Xy, and expanding the resulting equality
with respect to 8}, we obtain

xu+
By = [@i '_R13(1+R12 2 sV f

n=0

—RRys (1 +Ry) 2 s~ —

n=0

+ Rys —Ryz exp (e, Xs) 2 Sg)erl —

n=0

— RRyRyy exp(c,Xp) ¥ 57 xg] v

n=0

[1 4+ Ry Bl + Ryp) 2 mT

n=0
—1

+RyBeveX) ¥ o0XE L @D

n=0
where
R = —Ry(cs+ Ryp -+ 1).

By way of example, we shall examine a heat ex-
change equipment in which the motion of the heat trans-
fer agent corresponds to scheme (a), it being the case
that t§ >, t} >t t{ = t{". Suppose that we are re-
quired to deterrmne the f1na1 temperatures of agents
[ and II, given that Ry, =2.65; Ry3=1;c4 = ¢z = 0.7;
B=2;X=0.1;0] = —1; t; = 400° C; t] — t{' = 20° C.

From (23a) and (24a) we determme ap, and by,
taking into account the notation of (14),

a, =—0>5.74; a;=26; a,=—091; a;=02[;
by=—16; by=—1; b,= 135, by,=—0.78.
According to (31)
s =1, s{V=0; s{=—08; s=137
sP=0; sP=1, sP=—29 sP=57.
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From (37) we find ®;' = —0.83.
From (30), (27), and (27a) we determine
Cy=—1; C,=264 C,=—158.
From (29)
0"|x=0,1 = —0.8.
From (32), taking into account (28),
®'|x=0.1 = — 0.25.

From relations (6)—(8), the final temperatures of
agents I, II, and III are equal, respectively, to .

tr = 305°% f;=095% # = 85°.

There is considerable practical interest in the case
of heat transfer between two heat transfer agents with
a surrounding medium at constant temperature, i.e.,
where losses must be taken into account. If th: sur-
rounding medium is the third agent, it is clear that
Ry3— 0. Then, instead of (11)—(13), we have the fol-
lowing system of equations:

49 (@ — o) exp(—cX)—B(© —6)), (38)
X

d @” — ’ 7
W = T Ry, (® —&)exp(—cX), (39)
48" _ 40)

X
where
B=—F 4
Oaj

As before, the upper sign here refers to counterflow,
and the lower to parallel flow.
From (38)—(40) we obtain

d2®” d@” ”_
T T P,y (X) TX—-.‘-QZ(X)(@ =R(X), (1)

where for parallel flow

Py (X) = ¢y + B + (1 4 Ryy) exp (— ¢,X),
Qy (X) = B Ryp exp (— caX);
for counterflow
Py (X) = ¢y + B+ (1 — Ryp) exp(—uX),
Qy(X) = — B Rypexp (—c, X);

and for both cases
R(X) =B Ry, 0 exp(—c,X).

Let us write down the boundary conditions. From
(7) the first boundary condition is for parallel flow

@”\X=0 =—1, (42)
for counterflow
@”lx_—_o = @}. 43)

We obtain a second boundary condition from (39), for
parallel flow

LA (44)
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for counterflow

d @//

——| = R,6% 45
aX |x_o Ry, B¢ 45)

We seek a solution of (41) in the form of a partic-
ular integral which will satisfy conditions (42)—(45).
In the same way as before, we may represent this
solution in power series form,

0" = i s, X". 46)

n=0

The coefficients Py (X), Q;(X) and the free term
R(X), after the expansion in series, take the following
form:

.
1y X =

Py(X)= A+ Bexp(—c,X) = A—{—Bz
= m!

=ay+ ) a.X", @7

m=1
where
A 4 m
ao—A-i-B, am=B———n—ﬂ—(—1),

A=C4+ﬁ, B=1 ?Rlz’
Qz (X) =FBRy exp(_C4X) =

@

Cm
=TBRy Y —

(—1"X™ = % 2 b X™, (48)

m=0 m=0
where
'
bm = ﬁR12 m' (_ I)ma
R(Xy=PBRy, 0. exp(— €, X) =
add = CT myn - m
=B R, 0. 2 por (— 1"X™ = 2 d,X™ (49)
m=0 m=0
where

e CF
dy =B Ry, O —r—;:—‘— (=1

The series (46)—(49) are absolutely convergent for
¢y > 0. By substituting (46)—(49) into the original equa-
tion (41) and determined the coefficients sy by the
method of undetermined coefficients, we find the
values for all the sy. The coefficients sy and s are
determined from (46) on the basis of the boundary
conditions (42—(45).

Thus, we obtain, for parallel flow
S1 = Ry, (50)

Sp = — 1)
for counterflow

Sp = @;, 851 =Ry, @;. (51)
The remaining coefficients are determined from the
formula

1
nel = T T dn— -
Snai nt D) ': 1

n—1

13
— 2 5,0, — 2 sib,,_(;+l,], n=1, 2, 3... (52)
i=l

=it
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As before, for X = 0.5, it is convenient to replace X
in the solution (46) by X — X, it being required that
X - X, =0.5.
From (39) we have
de”
0 = 0" I R, exp (e X) ——. 53
F Ry exp(cX) ax (63)
Substituting the value of d®"/dX from (486) into (53),
we obtain an expression for the dimensionless tem~
peratures of the gases

0" = 0" F R, exp (¢, X) 2 ns, X" . (54)
n=1

For the counterflow case, when tg = tj, which occurs

in the majority of practical cases, it follows from (8)
that ®¢ = —1, and thus, according to (48 and (49),
Ibml= fdm].

As is clear from what has been said, the equations
obtained are used to determine the temperatures of
heat transfer agents when the heat transfer coefficients
and surface areas are known. The inverse problem is
possible, however, if the temperature is known, then,
for given heat transfer coefficients, we may determine
the heat transfer area, while, for a given heat trans-—
fer area, we may determine the local heat transfer
coefficient. In the latter cases, however, the matter
of finding the desired values reduces to solution of a
transcendental equation, and it is therefore convenient
to carry out the determination from tables or a nomo-
gram.

NOTATION

c is the an empirical coefficient; F is the heat
transfer surface area; k is the overall heat transfer
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coefficient; Ry, = W,/W,, Ry3= W;/W; are the ratios
of water equivalents; t is the temperature heat trans~
fer agents; W is the water equivalent; « is the heat
transfer coefficient. Subscripts: 1, 2, 3, and also
single prime, double prime, and triple prime cor-
respond to the first, second, and third heat transfer
agents; i and f are the initial and final values of the
quantities; ¢ indicates that the quantity is constant.
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